Canonical approach to Lagrange multipliers
نویسنده
چکیده
Lagrange multipliers are present in any gauge theory. They possess peculiar gauge transformation which is not generated by the constraints in the model as it is the case with the other variables. For rank one gauge theories we show how to alter the constraints so that they become generators of the local symmetry algebra in the space of Lagrange multipliers too. We also discuss the limitations on using different gauge conditions and construct the BRST charge corresponding to the newly found constraints.
منابع مشابه
0 v 2 1 1 D ec 1 99 7 Reducible systems and embedding procedures in the canonical formalism
We propose a systematic method of dealing with the canonical constrained structure of reducible systems in the Dirac and symplectic approaches which involves an enlargement of phase and configuration spaces, respectively. It is not necessary, as in the Dirac approach, to isolate the independent subset of constraints or to introduce , as in the symplectic analysis, a series of lagrange multiplie...
متن کاملCombination of Genetic Algorithm With Lagrange Multipliers For Lot-Size Determination in Capacity Constrained Multi-Period, Multi-Product and Multi-Stage Problems
Abstract : In this paper a meta-heuristic approach has been presented to solve lot-size determination problems in a complex multi-stage production planning problems with production capacity constraint. This type of problems has multiple products with sequential production processes which are manufactured in different periods to meet customer’s demand. By determining the decision variables, mac...
متن کاملEuropean option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کامل16QAM Blind Equalization via Maximum Entropy Density Approximation Technique and Nonlinear Lagrange Multipliers
Recently a new blind equalization method was proposed for the 16QAM constellation input inspired by the maximum entropy density approximation technique with improved equalization performance compared to the maximum entropy approach, Godard's algorithm, and others. In addition, an approximated expression for the minimum mean square error (MSE) was obtained. The idea was to find those Lagrange mu...
متن کاملAnalysis of thin plates by a combination of isogeometric analysis and the Lagrange multiplier approach
The isogeometric analysis is increasingly used in various engineering problems. It is based on Non-Uniform Rational B-Splines (NURBS) basis function applied for the solution field approximation and the geometry description. One of the major concerns with this method is finding an efficient approach to impose essential boundary conditions, especially for inhomogeneous boundaries. The main contri...
متن کامل